Примеры решения задач на движение - СПИШИ У АНТОШКИ

Поиск
Перейти к контенту

Главное меню:

Примеры решения задач на движение

Для этой главы мы будем считать, что тела движутся прямолинейно и равномерно, скорости постоянны в течение определенных промежутков времени, не меняются при поворотах и т. д., движущиеся тела считаются материальными точками.
Основная формула равномерного движения: 
S = v · t,
Где S – путь, t – время, v – скорость.
ПУТЬ РАВЕН ПРОИЗВЕДЕНИЮ СКОРОСТИ НА ВРЕМЯ ДВИЖЕНИЯ
Если известны расстояние и время, то скорость находится по формуле: v = S /t; 
если известны расстояние и скорость, то время находится по формуле: t = S / v

Основные типы задач на движение:
1) задачи на движение по прямой (навстречу и вдогонку),
2) задачи на движение по замкнутой трассе,
3) задачи на движение по воде,
4) задачи на среднюю скорость,
5) задачи на движение протяженных тел.
Рассмотрим более подробно каждый из этих типов задач, выделив, где необходимо, базовые задачи.
Движение навстречу друг другу
Одним из методов решения задач является создание упрощенной модели. или иллюстративного чертежа.


Если расстояние между двумя телами равно s, а их скорости v1 и v2, то время t, через которое они встретятся, находится по формуле t = S/(v1 + v2 ).

Рассмотрим задачу
ЗАДАЧА 1 Расстояние между городами А и В равно 435 км. Из города А в город В со скоростью 60 км/ч выехал первый автомобиль, а через час после этого навстречу ему из города В выехал со скоростью 65 км/ч второй автомобиль. На каком расстоянии от города А автомобили встретятся? Ответ дайте в километрах.

Посмотрите на схему, через час после выезда первого автомобиля расстояние между автомобилями стало равно 435 - 60 = 375 (км), поэтому автомобили встретятся через время, которое определим по формуле t = S/(v1 + v2 )
t = 375( км) /(60 (км/ч) + 65 (км/ч)) = 3 (ч)
Таким образом, до момента встречи первый автомобиль будет находиться в пути 4 часа и проедет  путь S = v · t 
S = v · t = 60 (км) · 4 (ч) = 240 (км).
Движение вдогонку
Если расстояние между двумя телами равно s, и они движутся по прямой в одну сторону со скоростями v1 и v2 соответственно (v1 > v2) так, что первое тело следует за вторым, то время t, через которое первое тело догонит второе, находится по формуле t = S/(v1 - v2 ).
Рассмотрим задачу
ЗАДАЧА 2 Два пешехода отправляются в одном направлении одновременно из одного и того же места на прогулку по аллее парка. Скорость первого на 1,5 км/ч больше скорости второго. Через сколько минут расстояние между пешеходами станет равным 300 метрам?

Время t в часах, за которое расстояние между пешеходами станет равным 300 метрам, (СИ = 0,3 км) , находим по формуле 
t = S/(v1 - v2 )
t = 0,3 (км)/(v + 1,5 км/ч - v) = 0,3 (км)/1,5 (км/ч) = 0,2 (ч)
Следовательно, это время составляет  0,2 (ч) или 12 минут.
Движение по воде
Особые виды задач на движение – движение тел по воде. При решении задач на движение по воде необходимо помнить следующее:
Скорость тела, движущегося по течению реки, равна сумме собственной скорости тела (скорость в стоячей воде) и скорости течения реки.
Скорость тела, движущегося против течения реки, равна разности собственной скорости тела и скорости течения реки.
Если в условии задачи речь идет о движении плотов, то этим хотят сказать, что тело движется со скоростью течения реки (собственная скорость плота равна нулю).
Рассмотрим задачу.
ЗАДАЧА 3  Тоша в 7 часов утра отплыл от пристани «Веселые собачки» на плоту вниз по течению реки. Через 8 часов Филя отплыл от этой же пристани на моторной лодке со скоростью 25 км/час и через два часа догнал Тошу. Найти скорость течения реки.

Решение.
S = v · t = 25 (км/ч) · 2  (ч) = 50 (км) – проплыл Филя до встречи с Тошей.
8 (ч) + 2 (ч)  = 10 (ч) – плыл Тоша, пока его не догнал Филя.
v = S/t  = 50 (км) · 10 (ч) = 5 (км/час) – скорость, с которой плыл Тоша на плоту. Это и есть скорость течения реки (собственная скорость плота равна нулю).
Ответ: 5 км/ч.

ЗАДАЧА 4
Пловец, плывя против течения реки, потерял часы. Он заметил пропажу, развернулся и догнал их, проплыв по течению 30 минут. Чему равна скорость течения реки, если он их догнал в 2 километраx от места потери? Ответ запишите в км/ч.

Решение задачи
Относительно часов пловец плывёт с постоянной скоростью, поэтому 2 километра часы проплыли за 60 минут, то есть за 1 час. Следовательно, скорость течения реки равна 2 км/ч.

ЗАДАЧА 5
Из пункта А круговой трассы выехал велосипедист, а через 40 минут следом за ним отправился мотоциклист (при этом велосипедист еще не проехал точку А). Через 8 минут после отправления он догнал велосипедиста в первый раз, а через 36 минут после этого догнал его во второй раз. Найдите скорость мотоциклиста, если длина трассы равна 30 км. Ответ дайте в км\ч.

Решение задачи
До пер­вой встре­чи ве­ло­си­пе­дист про­вел на трас­се 48 минут, а мо­то­цик­лист 8 минут, то есть в 6 раз меньше. Пусть ско­рость мо­то­цик­ли­ста равна v км\ч, тогда ско­рость ве­ло­си­пе­ди­ста равна 1/6v.
Еще через 36 минут, то есть через 3/5 часа после пер­вой встре­чи, мо­то­цик­лист до­гнал ве­ло­си­пе­ди­ста во вто­рой раз, следовательно, за это время мотоциклист проехал на 1 круг больше. Поэтому
(v − 1/6v)⋅3/5 = 30.
v = 60 км\ч.

ЗАДАЧА 6
Чтобы добраться на работу Борис Викторович идёт пешком на автобусную остановку, куда в 7 утра подъезжает служебный автомобиль и отвозит его на работу. Однажды в понедельник, Борис Викторович пришёл на остановку в 6 утра, пошёл навстречу машине и приехал на работу на 30 минут раньше. Сколько минут Борис Викторович шёл пешком, если скорости его и автомобиля постоянны?

Решение задачи
Маршрут Бориса Викторовича в понедельник отличается пройдённым расстоянием пешком. Значит сэкономленные 30 минут — время, за которое автомобиль дважды преодолевает это расстояние. Поэтому одно такое расстояние автомобиль преодолевает за 15 минут (иными словами, автомобиль сэкономил 15 минут) и Борис Викторович встретился с автомобилем в 6:45 и шёл 45 минут пешком.

 
 
Поиск
Назад к содержимому | Назад к главному меню