Задачи на переливание - СПИШИ У АНТОШКИ

Поиск
Перейти к контенту

Главное меню:

Задачи на переливание

Теория > Олимпиада
задачи на переливаниеЗадачи на переливание - это задачи, в которых с помощью сосудов известных емкостей требуется отмерить некоторое количество жидкости. Простейший прием решения задач этого класса состоит в переборе возможных вариантов. 
В задачах на переливания требуется указать последовательность действий, при которой осуществляется требуемое переливание и выполнены все условия задачи. 

Если не сказано ничего другого, считается, что
- все сосуды без делений
- нельзя переливать жидкости "на глаз"
- невозможно ниоткуда добавлять жидкости и никуда сливать

Мы можем точно сказать, сколько жидкости в сосуде, только в следующих случаях.
1) знаем, что сосуд пуст,
2) знаем, что сосуд полон, а в задаче дана его вместимость,
3) в задаче дано, сколько жидкости в сосуде, а переливания с использованием этого сосуда не проводились
4) в переливании участвовали два сосуда, в каждом из которых известно, сколько было жидкости, и после переливания вся жидкость поместилась в один из них
5) в переливании участвовали два сосуда, в каждом из которых известно, сколько было жидкости, известна вместимость того сосуда, в который переливали, и известно, что вся жидкость в него не поместилась: мы можем найти, сколько ее осталось в другом сосуде

При решении задач используют следующие алгоритмы
Алгоритм I. - для решения задач первого типа.

1. Наполнить большую емкость жидкостью из бесконечного источника.
2. Перелить из большей емкости в меньшую емкость.
3. Вылить жидкость из меньшей емкости.
4. Повторить действия 1-3 до тех пор, пока не будет получено обозначенное в условии задачи количество жидкости.

Алгоритм II. - для решения задач второго типа

1. Из большей емкости наполнить емкость промежуточного объема.
2. Перелить жидкость из промежуточной емкости в самую маленькую емкость.
3. Перелить жидкость из самой маленькой емкости в большую емкость.
4. Повторять действия 2-3 до тех пор, пока емкость промежуточного объема не станет пустой.

Задача №1. Как пользуясь банками в 3л и 5л,  щенку Антошке набрать воды ровно 1л?
СосудыПЕРЕЛИВАНИЯ
5 литров-335 (3+2)





3 литра3-31






 
 Задача №2. Как отметить 4л воды с помощью сосудов в 3л и 5 л?
СосудыПЕРЕЛИВАНИЯ
5 литров
335 (3+2)114 (1+3)


3 литра3
31 (3-2)
3




 
 Задача №3. Антошке нужно покрасить забор. Он имеет 12 л краски и хочет отлить из этого количества половину, но у него нет сосуда вместимостью в 6 л. У него 2 сосуда: один – вместимостью в 8 л, а другой – вместимостью в 5 л. Каким образом налить 6 л краски в сосуд на 8 л? Какое наименьшее число переливаний необходимо при этом сделать?
Сосуды
ПЕРЕЛИВАНИЯ
12 литров12 4 (12-8)49 (4+5)91 (9-1)16 (1+5)

8 литров
83 (8-3)3
86 (8-2)6

5 литров5335 (3+2)












 
Поиск
Назад к содержимому | Назад к главному меню